

Perspectives on Aeromedical Evacuation in the RCAF

Major Melissa Gear, MD, MPH, CCFP, ABPM(AM) ASCS Flight Surgeon, Medical Director Strat AE

> CANADIAN ARMED FORCES

1 Nov 2022

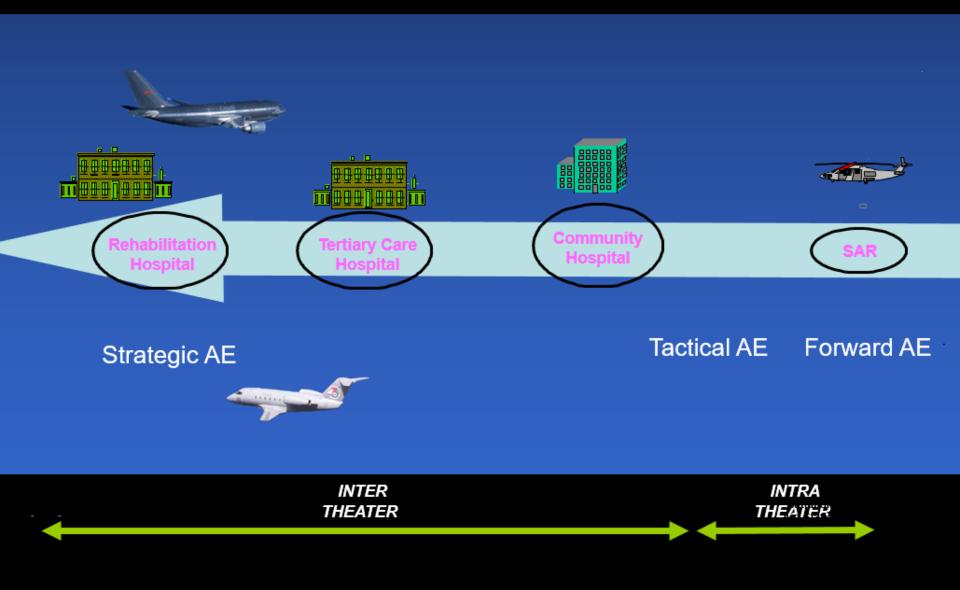
Disclosure

The views expressed in this presentation are mine and do not necessarily reflect the views, opinions or official policy of the Canadian Armed Forces.

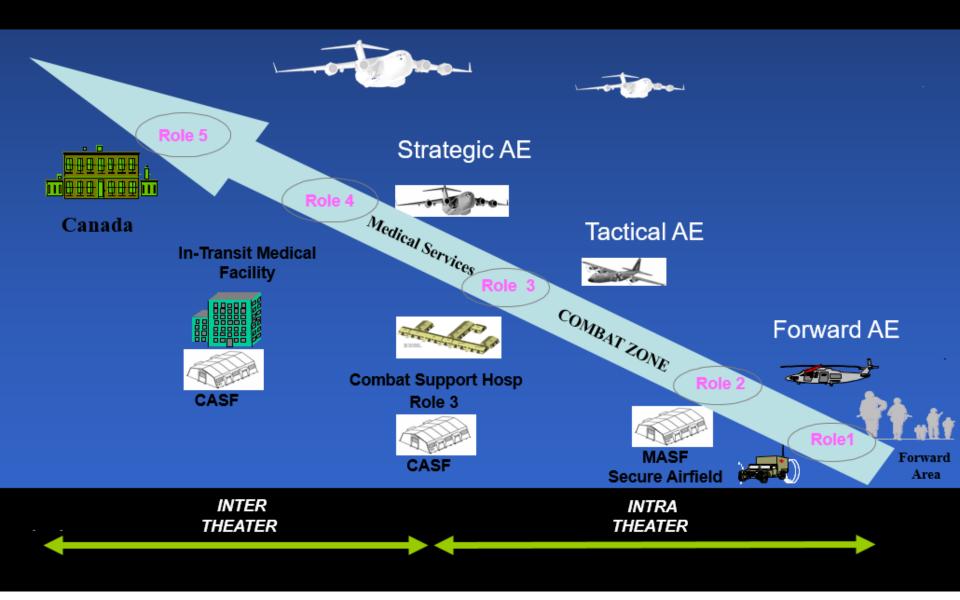
I have no conflicts of interest to declare.

Objectives

- 1. Spectrum of AE in the RCAF
- 2. In-flight medical considerations
- 3. Challenges with AE mission validation

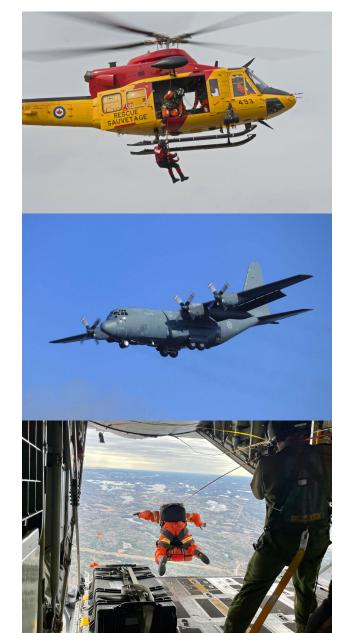


PART A: Spectrum of Aeromedical Evacuation in the RCAF


AEROMEDICAL EVACUATION

UN

Operational Concept for Domestic



Operational Concept for Casualty Flow

SAR (Search and Rescue) Platforms

Forward AE Platforms

Canadian Emergency Response Team (CMERT)

Strategic AE Platforms

CC144 Challenger 📀

CC130J Hercules 📀

CC150 Polaris

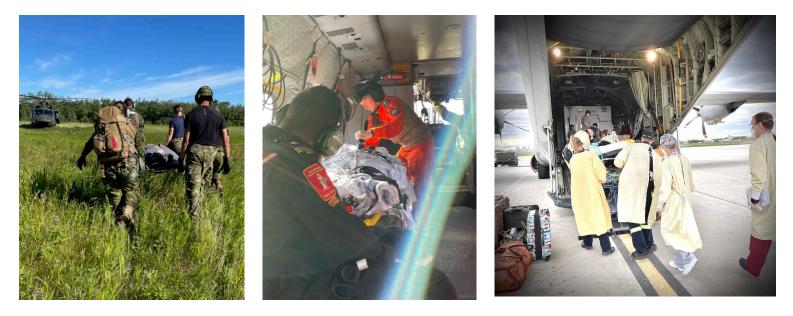
PLATFORM	PATIENT CAPACITY		
CC177 (Globemaster)	36 litters (tier) or 60 (floor)*		
CC150 (Airbus)	2 critical care bed*		
CC130J (Herc)	97 litters (tiers) or 18 (floor)*		
CC144 (Challenger)	2 basic care beds or 1 critical		
	care		

۲

Strategic AE missions

AE System – Aeromedical Evac Missions

Year	Strat	Domestic	Humanitarian	Tactical	Missions	(AE-C	CAE)	Total Pts
2008	25	3	0		28	32	6	38
2009	24	5	0		29	42	4	46
2010	27	10	Op Hestia (28)		37	112	10	122
2011	11	7	0		18	21	1	22
2012	3	4	1		8	6	2	8
2013	0	4	1		5	8	1	9
2014	5	5	0	2	12	8	4	12
2015	4	5	0	0	9	7	3	10
2016	3	4	0	0	7	7	0	7
2017	8	0	1	0	9	9	0	9
2018	7	6	0	0	13	13	0	13
2019	11	3	Op Lentus (9)	0	14	13	2	15
2020	5	3	Op Globe (2)	0	8	9	1	10
2021	3	2	RFA MB & SK 7 & 2	00	<u>1</u> 4	7	9	11
	ΤΟΤΑ	L AE MISSI	ONS 2008 -2021		176	293	46	341


PART B: In-flight medical considerations

Primary Goals of AE

- 1. Provide (at minimum) same level of care as sending facility
- 2. Compensate for stresses of flight
- 3. Manage medical complications

AE Crew Composition (Goal 1)

Basic Strategic AE Crew

- Two AE Crew Members (AECM) (Flight Nurse and Med Tech)
- AECM assigned role of MCD (Medical Crew Director)
- Flight Surgeon

CCAE (Critical Care) Team

- Basic AE Team (Flight Nurse + Flight Med Tech)
- 1-2 Critical Care Nurses (1 AECM and 1 Cdn Fd Hosp)
- 1 Critical Care Medical Officer (Anes, Intensivist, etc.)

Mental Health AE Crew

- Basic AE Team (Flight Nurse + Flight Med Tech)
- 1 Mental Health Nursing Officer

Note: Routinely augmented by a Flight Surgeon

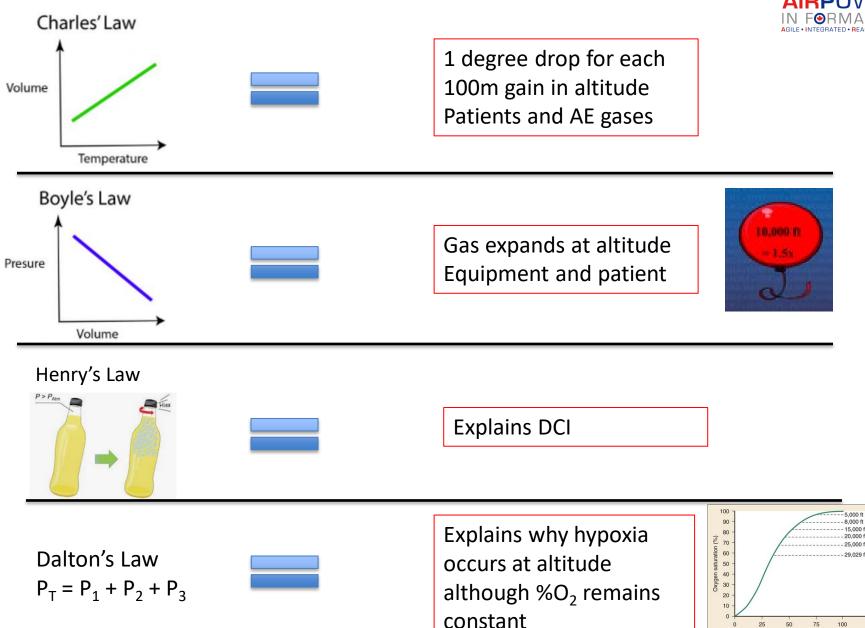
Compensate for Stressors of Flight (Goal 2)

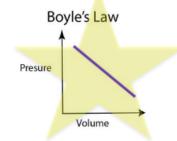
AEROSPACE MEDICINE HEALTHY PEOPLE must perform in all And ALL PEOPLE must sorts of abnormal travel through all sorts of environments PHYSICAL ENVIRONMENT abnormal environments Including really SICK -Toxic exposures -Hypobaric PEOPLE -Ergonomics -Hypothermic -Fire Rescue -Acoustic/Vibration -Hypoxic -Ambulances -Hypothermic -Microgravity -Hypoxic -Life Flight Helo Ops -Etc, etc -Dust Off -Hypobaric -Aeromedical Evacuation -Microgravity -Etc, etc, etc **OCCUPATIONAL MEDICINE** HEALTH SICKNESS **HUMAN HEALTH PREVENTIVE MEDICINE**

Aerospace Medicine and Human Performance

ISSN: 2375-6314, Online ISSN: 2375-6322 DOI: https://doi.org/10.3357/AMHP.914PresPage Volume 91, Issue 4, pages 311-31

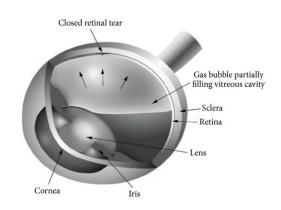
Stressors of Flight

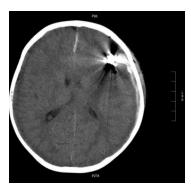

- 1. Decreased Partial Pressure of Oxygen
- 2. Decreased Barometric Pressure
- 3. Increased Noise
- 4. Decreased Relative Humidity
- 5. Variation in Cabin Temperature
- 6. Vibration/ G-Forces/ Turbulence
- 7. Poor Lighting
- 8. Anxiety/Apprehension


#1 & 2 Gas Laws

Po₂ (mm Hg)

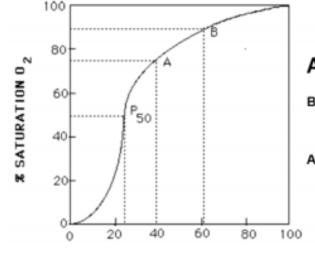
Air in the brain





- Case study of 21 AE with pneumocephalus (mean 9.2ml air)
 - no adverse outcomes
- Transient increase ICP < 5 during take off & landing
 - Feet forward & head aft

Air in the eye


- delay travel for approximately 2 wk after (SF6) and for 6 wk (C3F8)
- Penetrating eye trauma

In-flight O₂ requirements

PARTIAL PRESSURE 0,2

At 8000 Ft

B = Healthy Lungs $P_AO_2 \text{ is } 64$ $SaO_2 \text{ is } 90\%$

A = severe COPD P_AO_2 is 40 SaO_2 is 75% Dalton's Law $P_T = P_1 + P_2 + P_3$

TABLE 2: CONVERSION FOR IN-FLIGHT OXYGEN ADMINISTRATION

CABIN ALTITUDE	OXYGEN PERCENTAGE															
10,000	30	36	44	51	58	65	73	80	87	94	100					
9,000	29	35	42	49	56	63	70	77	84	91	98	100				
8,000	28	34	40	46	54	61	67	74	81	87	93	100				
7,000	27	32	39	45	52	58	65	71	78	84	91	97	100			
6,000	26	31	37	44	50	56	62	69	75	81	87	94	100			
5,000	25	30	36	42	48	54	60	66	72	78	84	90	96	100		
4,000	24	29	35	41	46	52	57	64	70	75	81	87	93	97	100	
3,000	23	28	33	39	45	50	56	61	67	73	78	84	89	95	100	
2,000	23	27	32	38	43	48	54	59	64	70	75	81	86	91	97	100
1,000	22	26	31	38	41	47	52	57	62	67	73	78	83	88	93	98
0	21	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95

Desired Sea Level Equivalent (SLE) Oxygen Percentage

Even though the delivered oxygen may be at 100%, the partial pressure of oxygen necessary to deliver 100% SLE cannot be obtained (ex: 100% O_2 @ 8,000 feet only provides 75% O_2 SLE).

Desired % of oxygen SLE cannot be obtained at these altitudes.

Reference: USAF AFI-48-307 Vol 1 Table 8-3 (2017)

#3: Increased Noise

Visual and Auditory alarms

Crew/ Patient communication

Patient hearing protection

#4 Decreased relative humidity

- Relative Humidity during typical flight
 - < 5% after 2 hours
 - < 1% after 4 hours
- Anticipate thickened respiratory secretions

#5 Variation in Cabin temperature

 Varies between aircraft and even within the same aircraft

#6 Acceleration/ Deceleration/ Vibration

- Medical supplies and equip
 - dangerous projectiles nothing loose
- Fractures
 - Instability can't use pulley traction, sand bags
 - Very painful ensure well padded
- Beds and litters aligned parallel to long-axis
- Take off and landing

Pain management

- Analgesia
 - PO/ IM/ IV
 - PCA pumps
 - continuous nerve block catheters
 - epidural catheters 1. Load AMBUS, transport to aircraft (60-90 minutes) 6. Disposition within medical facility (30-45 minutes) 5. Unload aircraft to 2. Taxi, takeoff, reach AMBUS, transport adequate altitude to medical facility (30-45 minutes) (90-129 minutes) 4. Approach, landing, taxi (30-45 minutes) 3. Flight time (~10 hours, variable)

* sedation and analgesia needs are likely to increase during transport $_{22}^{22}$

Motion sickness

- air sickness
 - vomiting (aspiration)
 - 1ICP
 - dehydration
 - abdominal wound disruption

* Consider anti-emetics pre-flight in all patients, suction readily available

* 1st gen antihistamine preferred

AIRPOWER IN FORMATION AGUE • INTEGRATED • REACH • POWER

#7. Poor lighting

- Monitoring patient
- Interventions
- communication

8. Anxiety/ Apprehension

- unfamiliar environment
- communication
- returning home
- flight safety considerations

Airway considerations

- Airway and Endotracheal Tube
 - Critically injured & unstable patients should have a definitive airway prior to transport
 - Difficult to intubate in-flight
 - Difficult to assess in-flight (breath sounds, chest wall movement)
 - Noise, vibration, poor lighting
- ETT Cuff Safest is air-filled & measure cuff pressures
 - Saline in cuff low compressibility ischemic a/w injury
 - * BEWARE OF ETT MIGRATION DURING TRANSPORT

Chest Tubes

- CXR pre-fight
- R/O pneumotx in all pt with hx of thoracic trauma
- R/A all pts with chest tubes to check position & function
- Prophylactic chest-tubes not indicated
- Unfit to fly for 24hr post chest tube removal

* Heimlich valve not required in line, required if chest drain removed

Ventilators

- Does your ventilator compensate for altitude changes?
- Humidification of Gases HME
- Time to ensure correct vent settings prior to transport from OMF

Tube/ equipment management

SMEED

Anemia

Tissue O₂ delivery dependent on:

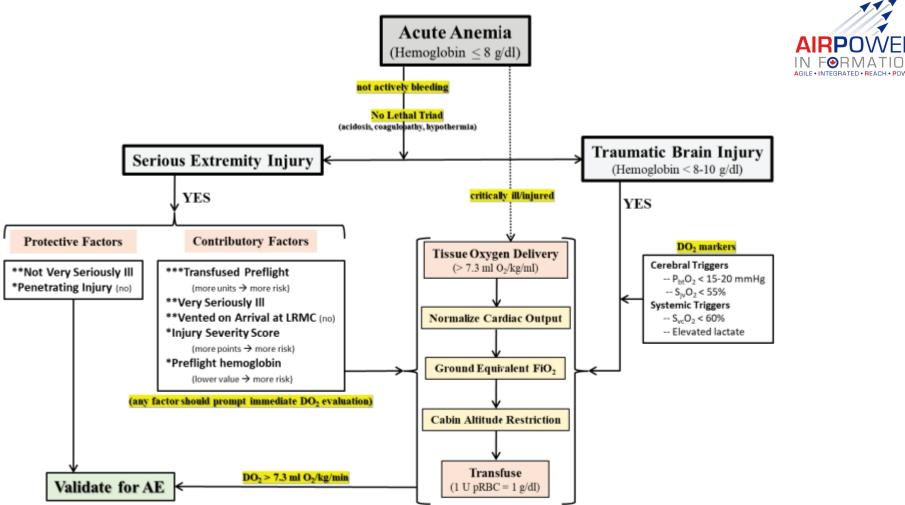
- 1. Hgb level (mitigate: transfusion)
- 2. Hgb saturation (mitigate: suppl O2 or CAR)
- 3. FiO₂ (mitigate: suppl O2 or CAR)
- 4. Cardiac output
- 5. Plasma O₂ content

Altitude Equivalent FiO ₂ and Hemoglobin Levels									
Acute Anemia									
A lational of (E4)	Ground Equivalent	Ground Equivalent	Saturation (100%)	Saturation (85%)					
Altitude (ft)	FiO ₂ (%)	Hemoglobin (g/dl)	Arterial Oxygen Content (vol%)						
12,000	13.3	5	6.7	5.7					
11,000	13.8	6	8.0	6.8					
9,500	14.7	7	9.4	8.0					
8,400	15.4	8	10.7	9.1					
7,200	16.1	9	12.1	10.3					
6,000	16.8	10	13.4	11.4					
4,800	17.6	11	14.7	12.5					
3,500	18.5	12	16.1	13.7					
2,400	19.2	13	17.4	14.8					
1,200	20.1	14	18.8	15.9					
0	21.0	15	20.1	17.1					

Table 9. Altitude Equivalent FiO2 and Hemoglobin Levels

Note: This table was created from materials within multiple sources. (McLaughlin, 2003; AAMETM, 2006; Butler, 2020d). FiO₂ (oxygen fraction of inspired air), ft (feet), % (percent), g (gram), dl (deciliter), vol% (volume percent).

Reference in notes


Anemia

- Normal cabin altitude (8000 ft)
 - Hgb 8 -10g/dl may be required to provide adequate tissue oxygenation
 - provide suppl O₂ if Hgb < 8.5 g/dl</p>
 - with FiO₂ 50% or more, Hgb 7-8 g/dl should be adequate (assuming normal CO & metabolic demand)
- Critical care pts have impaired or low normal CO and/or increased metabolic demands

= Hgb > 8 g/dl required

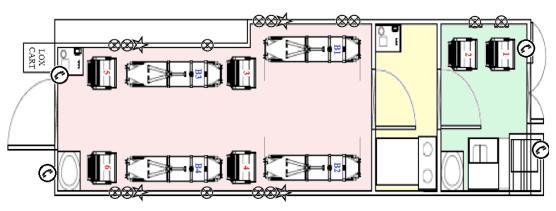
Note: This algorithm takes the study's findings and conjoins them with information/results from a number of publications to produce a logical and coherent approach to the patient with acute anemia. (**Diringer, 2011; Lelubre, 2016; Butler, 2020b; Butler, 2020d; Chou, 2021**) ***Denotes being named a factor in three of the four predictive models. **Denotes being named a factor in two of the four predictive models. *Denotes being named a factor in one of the four predictive models. g (gram), dl (deciliter), LRMC (Landstuhl Regional Medical Center), DO₂ (tissue oxygen delivery), ml (milliliter), O₂ (oxygen), kg (kilogram), min (minute), FiO₂ (oxygen fraction of inspired air), U (unit), pRBC (packed red blood cells), P_{bt}O₂ (partial pressure of oxygen in brain tissue), S_{jv}O₂ (jugular vein oxygen saturation), S_{ve}O₂ (vena cava oxygen saturation).

Figure 7. TVFS Validation Algorithm for Patients with Acute Anemia

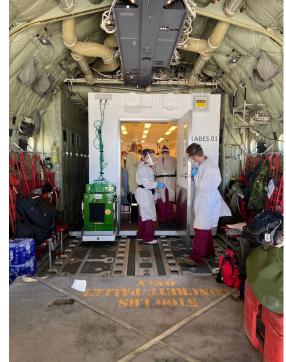
VTE

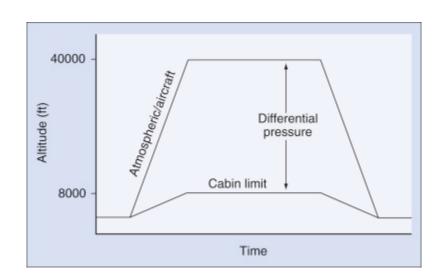
- Flight increases risk due to:
 - Immobility
 - Dehydration
 - nature of injury
- Rare from flights <6hrs
 - incidence ~0.5% from >8hr flights
 - unlikely during flight, often within 72hrs
- Risk stratify for flights >6 hrs
 - Low: general advice
 - Moderate: graduated compression stockings (15-30 mmHg at the ankle)
 - High: LMWH

<u>J Gen Intern Med.</u> 2007 Jan; 22(1): 107–114. Published online 2007 Jan 17. doi: 10.1007/s11606-006-0016-0


PMCID: PMC1824715 PMID: <u>17351849</u>

Air Travel and Venous Thromboembolism: A Systematic Review John T. Philbrick, MD,^{⊠1,2,3} Rebecca Shumate, MD,¹ Mir S. Siadaty, MD, MS,² and Daniel M. Becker, MD, MPH^{1,2} Author information ► Copyright and License information <u>Disclaimer</u>


Infectious Disease: ABES



Cabin Altitude Restrictions

Absolute Indications

- 1. DCI
- 2. Intracranial Air (?)
- 3. Intraocular Air
- 4. Cardiac Injuries

 More appropriate for managing problems associated with trapped air/ evolved gas rather than hypoxia

Cabin Altitude Restrictions

<u>Concerns</u>

- 1. Decreased maximum flight level
- 2. Increased turbulence
- 3. Increased flight time
- 4. Increased fuel consumption (range)

C17: CAR 2000ft – max ceiling 24,000ft CAR 4000 – 8000 ft, no restriction

* Can request changes to flight profile to min vector forces

Manage Medical Complications (Goal 3)

AIRPOWER IN FORMATION AGILE - INTEGRATED - REACH - POWE

- Planning is key
- Medication discussion
- Plan of care
- Potential complications
 - Most likely and most severe complications

In-flight Medical Emergencies

- Notify the MCD as soon as practical
- Recommend changes to mission profile
 - Aircraft diversion
 - Cabin altitude restriction
- Identify to the MCD any requirement for appropriate additional resources at destination such as:
 - Ground transport crew
 - Nurse and/or physician
 - Oxygen, medications and equipment

Diversion

Things to Consider

- Time to alternate vs. original destination
- Adequate medical resources
- Getting resources to the flight-line
- Pilot's concerns
 - Airfield runway, weather, security, fuel
- Consultation with MCD & AC Commander

Death Enroute

- Do not divert
- Do not declare legally dead until AC is on ground
 - Issues with treaties with other countries
- On board MD can halt resuscitation
 - Record apparent time of death (Local/Zulu)

Part C: Challenges with Mission Validation

Considerations

- Initial validation based on AE Request and Initial SITREP
- Consider entire journey (not just flight)
- Priority/ classification/ dependency
- Aircraft capability and availability
- Crew type, preparation, location
- Patient and aeromedical crew logistics

STRATEGIC AEROMEDICAL EVACUATION (AE) REQUEST

SECTION A – PATIENT INFORMATION							
Name:		Patient ID: (if applicable)					
Rank:		SN:					
Gender:		DOB:					
Ochder.		000.					
Parent unit:		MOC/MOSID:					
Move Window (Date/Time patient can be moved						
Earliest:	Latest:						
Lunioot.	Eatoot.						
	Originating Medi						
Name of OMF:		Ward					
		Phone					
Attending/Refer	ring Physician:	Phone					
		Email					
Referring CAF F	Physician:	Phone					
		Email					
Administrative F	Point of Contact at OMF:	Phone					
		Email					
	Destination Medi	al Facility (DMF)					
Name of DMF:		Ward					
		Phone					
Attending/Recei	ving Physician:	Phone					
		Email					
Receiving Base	Wing Surgeon:	Phone					
, to contrary process	in the second second	Email					
Administrative F	Point of Contact at DMF:	Phone					
		Email					
	SECTION B – MISS	ON INFORMATION					
Priority		Additional AE crew required: (AE crew consists of one Flight Nurse, one Flight Med Tech and one Flight Surgeon) Specify:					
Classification		Special equipment require Specify:	:d:				
Dependency		Altitude restrictions: Specify:					
Lopondonoy		NOK accompanying: Name:					

Initial Med SITREP

Date	Date of injury/illness		
Attending Physician	Date of injury/intess		
Originating Medical Facility			
Admission Date	Description/Mechanism	Consultation Report	Labs/Hemodynamics
	of Injury/Illness		
Allergies			Urine Analysis
	Initial Injuries / Diagnosis		Unite Analysis
Relevant past medical history			
		Operative Procedures	
Medication prior to injury/illness			Mental Health Issues
	Current Medications		
Diet			
Life habits regarding			
		Imaging and Dx Tests	Infectious Disease Screening
Consent to release	Apparatus		
intornation			

+ daily updates

Challenges

- Language barriers/ documentation/ comms
- Standard of care/ patient not always as advertised
- Medication differences
- 'eyes' on the ground locally
- Securing a receiving bed at destination
- Equipment not brought or not airworthy can't use
- Transport logistics
- Time zones

Key Take Away Points:

- 1. Not as simple as "fit to fly"
- 2. Remember primary goals of AE
- 3. Planning is key

Questions?

Maj M.E. Gear melissa.gear@forces.gc.ca

